Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\mathrm{Mg}_{2} \mathrm{Na}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot \mathbf{2 0 \mathrm { H } _ { 2 } \mathrm { O } \text { and }}$ $\mathbf{M g}_{3} \mathrm{~V}_{\mathbf{1 0}} \mathrm{O}_{\mathbf{2 8}} \cdot \mathbf{2 8} \mathrm{H}_{2} \mathrm{O}$

Akifumi lida and Tomoji Ozeki*

Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
Correspondence e-mail: tozeki@cms.titech.ac.jp

Received 22 January 2004
Accepted 1 March 2004
Online 31 March 2004
The crystal structures of dimagnesium disodium decavanadate icosahydrate, $\mathrm{Mg}_{2} \mathrm{Na}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 20 \mathrm{H}_{2} \mathrm{O}$, (I), and trimagnesium decavanadate octacosahydrate, $\mathrm{Mg}_{3} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 28 \mathrm{H}_{2} \mathrm{O}$, (II), have been determined by single-crystal X-ray diffraction. They crystallize with monoclinic $(C 2 / c)$ and triclinic $(P \overline{1})$ symmetry, respectively. All the Mg^{2+} cations in (I) and (II) are octahedrally coordinated by six water molecules. The Na^{+} cations in (I) are coordinated by three water molecules and three O atoms of the decavanadate anions, and link the latter into a three-dimensional network. The decavanadate anions in (II) are not linked to one another.

Comment

When precipitated with more than one cationic species, the decavanadate anion, $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$, crystallizes into double salts with various kinds of three-dimensional arrangements of the constituent ions. Typical examples are the mineral hummerite, $\mathrm{K}_{2} \mathrm{Mg}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 16 \mathrm{H}_{2} \mathrm{O}$ (Avtamonova et al., 1990), and its isomorphous compounds $\mathrm{K}_{2} \mathrm{Zn}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 16 \mathrm{H}_{2} \mathrm{O}$ (Evans, 1966), $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Mg}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 16 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Rb}_{2} \mathrm{Mg}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 16 \mathrm{H}_{2} \mathrm{O}$ (Avtamonova et al., 1990), in which the monovalent cations link the decavanadate anions into layers that sandwich the hydrated $\left[M\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations. Recently, various new extended structures have been observed in some double decavanadate salts, such as one-dimensional chains in $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{2}\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{2}-$ [$\left.\mathrm{V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Higami et al., 2002), two-dimensional networks in $\mathrm{Na}_{4} \mathrm{NiV}_{10} \mathrm{O}_{28} \cdot 23 \mathrm{H}_{2} \mathrm{O}$ (Sun et al., 2002) and threedimensional structures in $\mathrm{K}_{2} \mathrm{Ba}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (Rastsvetaeva, 1999), $\mathrm{CuNa}_{4} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 23 \mathrm{H}_{2} \mathrm{O}$ (Iida \& Ozeki, 2003) and $\mathrm{K}_{4} \mathrm{Na}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (Lee \& Joo, 2003). We report here the crystal structure of $\mathrm{Mg}_{2} \mathrm{Na}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 20 \mathrm{H}_{2} \mathrm{O}$, (I), as a new addition to the family of alkali magnesium decavanadates. In the structure of (I), the decavanadate anions are linked into a three-dimensional structure by Na^{+}cations. Also reported here is the crystal structure of $\mathrm{Mg}_{3} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 28 \mathrm{H}_{2} \mathrm{O}$, (II), which complements the known alkaline earth decavanadates, including $\mathrm{Ca}_{3} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 17 \mathrm{H}_{2} \mathrm{O}$ (Swallow et al., 1966), $\mathrm{Ca}_{2}\left(\mathrm{H}_{3} \mathrm{O}\right)_{2^{-}}$
$\mathrm{V}_{10} \mathrm{O}_{28} \cdot 16 \mathrm{H}_{2} \mathrm{O}$ (Strukan et al., 1999), $\mathrm{Sr}_{3} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 22 \mathrm{H}_{2} \mathrm{O}$ (Nieto et al., 1993) and $\mathrm{Ba}_{3} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 19 \mathrm{H}_{2} \mathrm{O}$ (Kamenar et al., 1996).

From solutions containing Mg^{2+} and Na^{+}cations, the decavanadate anion crystallizes with both cations to produce (I). The asymmetric unit of (I) includes one-half of a [$\left.\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ anion, an Mg^{2+} cation, an Na^{+}cation and water molecules. The decavanadate anion is located on a twofold axis and has a metal-oxygen framework the same as that reported by Evans (1966) (Fig. 1). The Mg^{2+} cation is octahedrally coordinated by six water molecules, with $\mathrm{Mg}-\mathrm{O}$ distances of 2.0234 (15)-2.1398 (15) \AA (Table 1). The coordination environment of the Na^{+}cation consists of two O atoms from two separate $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ anions [at 2.4264 (15) and 2.6620 (15) Å] and three water molecules [at 2.3481 (17)2.5864 (19) Å], yielding a coordination geometry between square-pyramidal and trigonal-bipyramidal, with a τ parameter of 0.466 [τ is defined as the difference between the two largest bond angles at the metal center divided by 60 and is expected to be 1 for the ideal trigonal-bipyramidal geometry and 0 for the ideal square-pyramidal geometry (Addison et al., 1984)]. The sixth O atom approaches the Na^{+}ion at a distance of 2.9714 (16) \AA, capping a triangular face of the square pyramid. Each Na^{+}cation shares two water molecules with its symmetry equivalent, forming a dimeric cation, $\left[\mathrm{Na}_{2}-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$, that links the decavanadate anions into a threedimensional array (Fig. 2). The structure of this array is different from that in other decavanadates, such as

Figure 1

A perspective view of an asymmetric unit and selected neighbors of (I). Displacement ellipsoids are drawn at the 50% probability level. Na…O contacts longer than $2.7 \AA$ are shown as broken lines. [Symmetry codes: (i) $-x, y, \frac{1}{2}-z$; (ii) $\frac{1}{2}-x, \frac{3}{2}-y, 1-z$; (iii) $x, 1-y, \frac{1}{2}+z$; (iv) $\frac{1}{2}-x, \frac{1}{2}+y$, $\frac{1}{2}-z$.]
$\mathrm{K}_{2} \mathrm{Mg}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 16 \mathrm{H}_{2} \mathrm{O},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Mg}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 16 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Rb}_{2} \mathrm{Mg}_{2}-$ $\mathrm{V}_{10} \mathrm{O}_{28} \cdot 16 \mathrm{H}_{2} \mathrm{O}$ (Avtamonova et al., 1990), reflecting the different ionic radius and coordination requirement of the Na^{+} ion.

From solutions containing only Mg^{2+} as the cationic species, crystallization with the decavanadate anion gives (II). The asymmetric unit of (II) consists of two half $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ anions, each located on an inversion center, three Mg^{2+} cations and water molecules of crystallization. The metal-oxygen framework of the decavanadate anion is also identical to that reported by Evans (1966) (Fig. 3). Each Mg^{2+} cation is octahedrally coordinated by six water molecules, with $\mathrm{Mg}-\mathrm{O}$ distances ranging from 2.0351 (17) to 2.1165 (17) Å (Table 3). The hydrated Mg^{+}cations do not bind to the decavanadate anions; this situation is unlike that observed in other alkaline earth decavanadates or in the para-dodecatungstates $\mathrm{Mg}_{5^{-}}$ $\left[\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right] \cdot 38 \mathrm{H}_{2} \mathrm{O}$ (Tsay \& Silverton, 1973) and $\left(\mathrm{NH}_{4}\right)_{2}-$ $\left[\mathrm{Mg}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{18}\left(\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right)\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}(\mathrm{Li}$ et al., 1999). In contrast, the hydrated Cu^{2+} cation binds to the decavanadate anion in its simple salt but not in its double salt with Na^{+}(Iida \& Ozeki, 2003). The three $\left[\mathrm{Mg}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+}$ octahedra in (II) are linked together by hydrogen bonds. The coordination geometry of the water molecules around the Mg^{2+} cations is summarized in Table 4. According to the classification of Ferraris \& Fran-chini-Angela (1972), most of the water molecules adopt a class 1 type D geometry (coordinating only the Mg^{2+} cation approximately along the bisectrix of the lone-pair orbitals) or a class 2 type H geometry (coordinating the Mg^{2+} cation and accepting a hydrogen bond). However, atoms O30 and O46 adopt a class 1^{\prime} type J geometry (coordinating the Mg^{2+} cation along a lone-pair orbital), which was not found in $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (Ferraris \& Jones, 1973) or $\mathrm{MgSO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Baur, 1964).

Details of the hydrogen-bonding geometry in (I) are given in Tables 2, while the corresponding data for (II) are available in the archived CIF.

Figure 2
A packing diagram of (I), viewed along the c axis. Open octahedra, filled octahedra and filled circles represent $\mathrm{VO}_{6}, \mathrm{MgO}_{6}$ and Na^{+}groups, respectively. Open circles represent the O atoms of water molecules that do not coordinate Mg^{2+}.

Figure 3
A perspective view of an asymmetric unit and selected neighbors of (II). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $-x,-y,-z$; (ii) $1-x, 1-y, 1-z$.]

Experimental

$\mathrm{NaVO}_{3}(1.22 \mathrm{~g})$ was dissolved in hot water $(100 \mathrm{ml})$ and the pH was adjusted to 3.70 by adding $\mathrm{CH}_{3} \mathrm{COOH}$. An aqueous solution of $\mathrm{Mg}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.65 \mathrm{~g}$ in 10 ml of water $)$ was then added. The crude product, (I) $(1.12 \mathrm{~g})$, was obtained by adding acetone $(100 \mathrm{ml})$ dropwise to the reaction mixture. Diffraction-quality crystals of (I) were obtained by vapor-phase diffusion of acetone into an aqueous solution $(15 \mathrm{ml})$ of the crude product $(0.1 \mathrm{~g})$. A solution of decavanadic acid was prepared according to the method of Jahr \& Preuss (1965). $\mathrm{V}_{2} \mathrm{O}_{5}(3.64 \mathrm{~g})$ was dissolved in aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(50 \mathrm{ml}$ of 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ diluted with 400 ml of water). An aqueous solution of $\mathrm{Mg}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(2.68 \mathrm{~g}$ in 10 ml of water $)$ was added to the decavanadic acid solution. After the volume of the resulting solution had been reduced to 100 ml by heating, acetone $(100 \mathrm{ml})$ was added dropwise to obtain the crude product, (II) (4.50 g). Diffractionquality crystals of (II) were obtained by vapor-phase diffusion of acetone into an aqueous solution $(15 \mathrm{ml})$ of the crude product $(0.1 \mathrm{~g})$.

Compound (I)

Crystal data

$\mathrm{Mg}_{2} \mathrm{Na}_{2} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 20 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1412.32$
Monoclinic, $C 2 / c$
$a=23.8384$ (6) А
$b=11.0248$ (2) \AA
$c=16.9332(4) \AA$
$\beta=118.005(1)^{\circ}$
$\beta=3929.18(15) \AA^{3}$
$Z=4$
$D_{x}=2.387 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8192
reflections
$\theta=1.9-30.0^{\circ}$
$\mu=2.46 \mathrm{~mm}^{-1}$
$T=93$ (2) K
Plate, yellow-orange
$0.20 \times 0.18 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector system diffractometer

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.640, T_{\text {max }}=0.821$
18758 measured reflections

5746 independent reflections 4522 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-32 \rightarrow 33$
$k=-15 \rightarrow 15$
$l=-23 \rightarrow 18$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.075$
$S=1.01$
5746 reflections
360 parameters

All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0404 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.72 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.24 \mathrm{e}^{-3}$

Table 1
Selected interatomic distances ((\AA) for (I).

$\mathrm{Mg}-\mathrm{O} 18$	$2.0234(15)$	$\mathrm{Na}-\mathrm{O} 22$	$2.3481(17)$
$\mathrm{Mg}-\mathrm{O} 16$	$2.0298(15)$	$\mathrm{Na}-\mathrm{O} 21$	$2.4195(19)$
$\mathrm{Mg}-\mathrm{O} 15$	$2.0500(16)$	$\mathrm{Na}-\mathrm{O} 11$	$2.4264(15)$
$\mathrm{Mg}-\mathrm{O} 20$	$2.0523(16)$	$\mathrm{Na}-\mathrm{O} 21^{\mathrm{i}}$	$2.5864(19)$
$\mathrm{Mg}-\mathrm{O} 17$	$2.1082(15)$	$\mathrm{Na}-\mathrm{O} 3^{\text {ii }}$	$2.6620(15)$
$\mathrm{Mg}-\mathrm{O} 19$	$2.1398(15)$	$\mathrm{Na}-\mathrm{O} 4$	$2.9714(16)$

Symmetry codes: (i) $\frac{1}{2}-x, \frac{3}{2}-y, 1-z$; (ii) $x, 1-y, \frac{1}{2}+z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$ for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 15-\mathrm{H} 15 A \cdots \mathrm{O} 8^{\text {i }}$	0.72 (3)	2.02 (3)	2.7291 (19)	169 (3)
$\mathrm{O} 15-\mathrm{H} 15 B \cdots \mathrm{O} 24^{\text {ii }}$	0.72 (3)	2.06 (3)	2.749 (2)	160 (3)
O16-H16A \cdots O12	0.67 (3)	1.98 (3)	2.6517 (19)	175 (4)
$\mathrm{O} 16-\mathrm{H} 16 B \cdots \mathrm{O} 19^{\text {iiii }}$	0.75 (3)	2.02 (3)	2.774 (2)	179 (3)
O17-H17A . . O9	0.77 (3)	2.05 (3)	2.7933 (19)	164 (2)
O17-H17B \ldots O7 ${ }^{\text {iv }}$	0.71 (3)	2.10 (3)	2.8052 (19)	174 (3)
$\mathrm{O} 18-\mathrm{H} 18 A \cdots \mathrm{O} 23^{\mathrm{i}}$	0.74 (3)	1.99 (3)	2.729 (2)	176 (3)
$\mathrm{O} 18-\mathrm{H} 18 B \cdots \mathrm{O} 22^{\text {v }}$	0.69 (3)	2.11 (3)	2.800 (2)	177 (3)
$\mathrm{O} 19-\mathrm{H} 19 A \cdots \mathrm{O} 2^{\text {vi }}$	0.73 (3)	2.26 (3)	2.8600 (19)	141 (3)
$\mathrm{O} 19-\mathrm{H} 19 A \cdots \mathrm{O} 1^{\text {i }}$	0.73 (3)	2.52 (3)	3.037 (2)	130 (2)
$\mathrm{O} 19-\mathrm{H} 19 \mathrm{~B} \cdots \mathrm{O}^{\text {2 }}{ }^{\text {vii }}$	0.72 (3)	2.11 (3)	2.822 (2)	170 (3)
$\mathrm{O} 20-\mathrm{H} 20 A \cdots \mathrm{O} 6$	0.68 (3)	2.05 (3)	2.725 (2)	176 (3)
$\mathrm{O} 20-\mathrm{H} 20 \mathrm{~B} \cdots \mathrm{O} 10^{\text {vi }}$	0.72 (3)	1.97 (3)	2.686 (2)	171 (3)
$\mathrm{O} 21-\mathrm{H} 21 A \cdots \mathrm{O} 17^{\text {viii }}$	0.72 (3)	2.29 (4)	3.007 (2)	176 (4)
$\mathrm{O} 21-\mathrm{H} 21 B \cdots \mathrm{O} 2$	0.80 (3)	2.34 (3)	3.052 (2)	149 (3)
$\mathrm{O} 22-\mathrm{H} 22 A \cdots \mathrm{O} 23^{\text {vi }}$	0.69 (3)	2.09 (3)	2.784 (2)	174 (3)
$\mathrm{O} 22-\mathrm{H} 22 \mathrm{~B} \cdots \mathrm{O} 10^{\text {ix }}$	0.77 (3)	2.30 (3)	2.950 (2)	142 (3)
$\mathrm{O} 23-\mathrm{H} 23 A \cdots \mathrm{O} 8$	0.69 (3)	2.11 (3)	2.756 (2)	154 (3)
$\mathrm{O} 23-\mathrm{H} 23 \mathrm{~B} \cdots \mathrm{O} 4^{\text {iv }}$	0.82 (3)	2.19 (3)	2.900 (2)	146 (3)
$\mathrm{O} 24-\mathrm{H} 24 A \cdots \mathrm{O} 13$	0.74 (3)	1.95 (3)	2.685 (2)	172 (3)
$\mathrm{O} 24-\mathrm{H} 24 \mathrm{~B} \cdots \mathrm{O}^{\text {vi }}$	0.67 (3)	2.17 (3)	2.827 (2)	167 (3)

Symmetry codes: (i) $x,-y, \frac{1}{2}+z$; (ii) $x, y-1, z$; (iii) $-x,-y, 1-z$; (iv) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$; (v) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$; (vi) $x, 1-y, \frac{1}{2}+z$; (vii) $-x, 1-y, 1-z$; (viii)
$x, 1+y, z$; (ix) $\frac{1}{2}-x, \frac{3}{2}-y, 1-z$.

Compound (II)

Crystal data

$\mathrm{Mg}_{3} \mathrm{~V}_{10} \mathrm{O}_{28} \cdot 28 \mathrm{H}_{2} \mathrm{O}$	$Z=2$
$M_{r}=1534.78$	$D_{x}=2.220 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=10.4834(1) \AA$	Cell parameters from 8192
$b=10.7309(2) \AA$	reflections
$c=21.2293(4) \AA$	$\theta=2.0-30.0^{\circ}$
$\alpha=90.751(1)^{\circ}$	$\mu=2.12 \mathrm{~mm}^{-1}$
$\beta=97.866(1)^{\circ}$	$T=93(2) \mathrm{K}$
$\gamma=103.663(1)^{\circ}$	Block, orange
$V=2296.24(6) \AA^{3}$	$0.30 \times 0.18 \times 0.14 \mathrm{~mm}$
Data collection	
Bruker SMART CCD area-detector	13207 independent reflections
\quad diffractometer	10950 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.025$
Absorption correction: multi-scan	$\theta_{\text {max }}=30.0^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$h=-14 \rightarrow 14$
$T_{\text {min }}=0.518, T_{\text {max }}=0.743$	$k=-9 \rightarrow 15$
22 420 measured reflections	$l=-27 \rightarrow 29$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
H -atom parameters not refined
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032 \quad w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0467 P)^{2}\right]$
$w R\left(F^{2}\right)=0.086$
$S=1.01$
13207 reflections
632 parameters
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.99 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.95 \mathrm{e}^{-3}$

Table 3
Selected interatomic distances (\AA) for (II).

$\mathrm{Mg} 1-\mathrm{O} 33$	$2.0351(17)$	$\mathrm{Mg} 2-\mathrm{O} 36$	$2.0643(18)$
$\mathrm{Mg} 1-\mathrm{O} 30$	$2.0474(16)$	$\mathrm{Mg} 2-\mathrm{O} 35$	$2.0818(16)$
$\mathrm{Mg} 1-\mathrm{O} 31$	$2.0721(17)$	$\mathrm{Mg} 2-\mathrm{O} 39$	$2.1008(16)$
$\mathrm{Mg} 1-\mathrm{O} 32$	$2.0846(16)$	$\mathrm{Mg} 3-\mathrm{O} 45$	$2.0414(17)$
$\mathrm{Mg} 1-\mathrm{O} 29$	$2.0868(17)$	$\mathrm{Mg} 3-\mathrm{O} 43$	$2.0521(17)$
$\mathrm{Mg} 1-\mathrm{O} 34$	$2.1165(17)$	$\mathrm{Mg} 3-\mathrm{O} 44$	$2.0571(19)$
$\mathrm{Mg} 2-\mathrm{O} 37$	$2.0413(17)$	$\mathrm{Mg} 3-\mathrm{O} 46$	$2.0692(19)$
$\mathrm{Mg} 2-\mathrm{O} 38$	$2.0453(17)$	$\mathrm{Mg} 3-\mathrm{O} 41$	$2.0756(17)$
$\mathrm{Mg} 2-\mathrm{O} 40$	$2.0509(17)$	$\mathrm{Mg} 3-\mathrm{O} 42$	$2.0837(17)$

Table 4
Coordination geometries of the water molecules around the Mg^{2+} cations.

Mg	O	$\varepsilon \dagger\left({ }^{\circ}\right)$	Classification \ddagger
Compound (I)			
Mg	O15	19.0	Class 1, type D
	O16	0.0	Class 1, type D
	O17	36.5	Class 2, type H
	O18	8.6	Class 1, type D
	O19	40.1	Class 2, type H
	O20	17.2	Class 1, type D
Compound (II)			
Mg1	O29	18.9	Class 1, type D
	O30	40.7	Class $1^{\prime \prime}$, type J
	O31	8.3	Class 1, type D
	O32	34.0	Class 2, type H
	O33	7.0	Class 1, type D
	O34	60.0	Class 2, type H
Mg2	O35	39.2	Class 2, type H
	O36	26.3	Class 1, type D
	O37	6.0	Class 1, type D
	O38	8.9	Class 1, type D
	O39	33.0	Class 2, type H
	O40	13.4	Class 1, type D
Mg3	O41	25.1	Class 1, type D
	O42	12.6	Class 1, type D
	O43	18.6	Class 1, type D
	O44	27.5	Class 1, type D
	O45	0.0	Class 1, type D
	O46	36.6	Class $1^{\prime \prime}$, type J

\dagger Angle between the $\mathrm{Mg}-\mathrm{O}$ bond and the plane defined by the water molecule. \ddagger Classification defined by Ferraris \& Franchini-Angela (1972).

All H atoms were located from difference Fourier syntheses. For (I), the positional and displacement parameters of the H atoms were refined fully. For (II), the positional parameters of the H atoms were fixed and their $U_{\text {iso }}$ parameters were fixed at $1.5 U_{\text {eq }}$ of the O atom of the corresponding water molecule. Thus, the geometric parameters involving the H atoms in (II) are less reliable and show some discrepancies with normal values. They are nevertheless included in the current structure analysis because they provide sufficient information on the hydrogen-bond networks. Two water molecules in (II) are disordered, $v i z$. O55A/O55B, with site occupancies of 0.685 (12) and 0.315 (12), and $O 56 A / O 56 B$, with occupancies of 0.657 (6) and 0.343 (6). The H atoms bonded to the minor O -atom positions could not be located from Fourier maps. A short contact between atoms O12 and O55B $(2.86 \AA)$ can be attributed to a hydrogen bond via an undetermined H atom.

inorganic compounds

For both compounds, data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1999) and ORTEPIII (Burnett \& Johnson, 1996).

TO thanks CREST (Core Research for Evolutional Science and Technology), the Japanese Science and Technology Agency, and the Japanese Society for the Promotion of Science (Grant-in-Aid for Scientific Research No. 15550047) for partial funding for this research.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BC1038). Services for accessing these data are described at the back of the journal.

References

Addison, A. W., Rao, N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Avtamonova, N. V., Trunov, V. K. \& Makarevich, L. G. (1990). Izv. Akad. Nauk SSSR Neorg. Mater. 26, 350-356.

Baur, W. H. (1964). Acta Cryst. 17, 863-869.
Bruker (1998). SAINT and SMART. Versions 5.00. Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Dowty, E. (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.
Evans, H. T. Jr (1966). Inorg. Chem. 5, 967-977.
Ferraris, G. \& Franchini-Angela, M. (1972). Acta Cryst. B28, 3572-3583.
Ferraris, G. \& Jones, D. W. (1973). J. Chem. Soc. Dalton Trans. pp. 816-821.
Higami, T., Hashimoto, M. \& Okeya, S. (2002). Acta Cryst. C58, i144-i146.
Iida, A. \& Ozeki, T. (2003). Acta Cryst. C59, i41-i44.
Jahr, K. F. \& Preuss, F. (1965). Chem. Ber. 98, 3297-3302.
Kamenar, B., Cindrić, M. \& Strukan, N. (1996). Acta Cryst. C52, 1338-1341.
Lee, U. \& Joo, H.-C. (2003). Acta Cryst. E59, i122-i124.
Li, J., Wang, R.-J. \& Torardi, C. C. (1999). Acta Cryst. C55, 1388-1391.
Nieto, J. M., Salagre, P., Medina, F., Sueiras, J. E. \& Solans, X. (1993). Acta Cryst. C49, 1879-1881.
Rastsvetaeva, R. K. (1999). Kristallografiya, 44, 1027-1028.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Strukan, N., Cindrić, M. \& Kamenar, B. (1999). Acta Cryst. C55, 291293.

Sun, Z.-G., Long, L.-S., Ren, Y.-P., Huang, R.-B., Zheng, L.-S. \& Ng, S. W. (2002). Acta Cryst. E58, i34-i36.

Swallow, A. G., Ahmed, F. R. \& Barnes, W. H. (1966). Acta Cryst. 21, 397405.

Tsay, Y.-H. \& Silverton, J. V. (1973). Z. Kristallogr. 137, 256-279.

